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§1.2 TENSOR CONCEPTS AND TRANSFORMATIONS

For ê1, ê2, ê3 independent orthogonal unit vectors (base vectors), we may write any vector ~A as

~A = A1 ê1 +A2 ê2 +A3 ê3

where (A1, A2, A3) are the coordinates of ~A relative to the base vectors chosen. These components are the

projection of ~A onto the base vectors and

~A = ( ~A · ê1) ê1 + ( ~A · ê2) ê2 + ( ~A · ê3) ê3.

Select any three independent orthogonal vectors, (~E1, ~E2, ~E3), not necessarily of unit length, we can then

write

ê1 =
~E1

| ~E1|
, ê2 =

~E2

| ~E2|
, ê3 =

~E3

| ~E3|
,

and consequently, the vector ~A can be expressed as

~A =

(
~A · ~E1

~E1 · ~E1

)
~E1 +

(
~A · ~E2

~E2 · ~E2

)
~E2 +

(
~A · ~E3

~E3 · ~E3

)
~E3.

Here we say that
~A · ~E(i)

~E(i) · ~E(i)

, i = 1, 2, 3

are the components of ~A relative to the chosen base vectors ~E1, ~E2, ~E3. Recall that the parenthesis about

the subscript i denotes that there is no summation on this subscript. It is then treated as a free subscript

which can have any of the values 1, 2 or 3.

Reciprocal Basis

Consider a set of any three independent vectors (~E1, ~E2, ~E3) which are not necessarily orthogonal, nor of

unit length. In order to represent the vector ~A in terms of these vectors we must find components (A1, A2, A3)

such that
~A = A1 ~E1 +A2 ~E2 +A3 ~E3.

This can be done by taking appropriate projections and obtaining three equations and three unknowns from

which the components are determined. A much easier way to find the components (A1, A2, A3) is to construct

a reciprocal basis ( ~E1, ~E2, ~E3). Recall that two bases (~E1, ~E2, ~E3) and ( ~E1, ~E2, ~E3) are said to be reciprocal

if they satisfy the condition

~Ei · ~Ej = δj
i =

{
1 if i = j

0 if i 6= j
.

Note that ~E2 · ~E1 = δ12 = 0 and ~E3 · ~E1 = δ13 = 0 so that the vector ~E1 is perpendicular to both the

vectors ~E2 and ~E3. (i.e. A vector from one basis is orthogonal to two of the vectors from the other basis.)

We can therefore write ~E1 = V −1 ~E2 × ~E3 where V is a constant to be determined. By taking the dot

product of both sides of this equation with the vector ~E1 we find that V = ~E1 · ( ~E2 × ~E3) is the volume

of the parallelepiped formed by the three vectors ~E1, ~E2, ~E3 when their origins are made to coincide. In a
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similar manner it can be demonstrated that for ( ~E1, ~E2, ~E3) a given set of basis vectors, then the reciprocal

basis vectors are determined from the relations

~E1 =
1
V
~E2 × ~E3, ~E2 =

1
V
~E3 × ~E1, ~E3 =

1
V
~E1 × ~E2,

where V = ~E1 · ( ~E2 × ~E3) 6= 0 is a triple scalar product and represents the volume of the parallelepiped

having the basis vectors for its sides.

Let ( ~E1, ~E2, ~E3) and ( ~E1, ~E2, ~E3) denote a system of reciprocal bases. We can represent any vector ~A

with respect to either of these bases. If we select the basis ( ~E1, ~E2, ~E3) and represent ~A in the form

~A = A1 ~E1 +A2 ~E2 +A3 ~E3, (1.2.1)

then the components (A1, A2, A3) of ~A relative to the basis vectors ( ~E1, ~E2, ~E3) are called the contravariant

components of ~A. These components can be determined from the equations

~A · ~E1 = A1, ~A · ~E2 = A2, ~A · ~E3 = A3.

Similarly, if we choose the reciprocal basis (~E1, ~E2, ~E3) and represent ~A in the form

~A = A1
~E1 +A2

~E2 +A3
~E3, (1.2.2)

then the components (A1, A2, A3) relative to the basis ( ~E1, ~E2, ~E3) are called the covariant components of
~A. These components can be determined from the relations

~A · ~E1 = A1, ~A · ~E2 = A2, ~A · ~E3 = A3.

The contravariant and covariant components are different ways of representing the same vector with respect

to a set of reciprocal basis vectors. There is a simple relationship between these components which we now

develop. We introduce the notation

~Ei · ~Ej = gij = gji, and ~Ei · ~Ej = gij = gji (1.2.3)

where gij are called the metric components of the space and gij are called the conjugate metric components

of the space. We can then write
~A · ~E1 = A1( ~E1 · ~E1) +A2( ~E2 · ~E1) +A3( ~E3 · ~E1) = A1

~A · ~E1 = A1( ~E1 · ~E1) +A2( ~E2 · ~E1) +A3( ~E3 · ~E1) = A1

or

A1 = A1g11 +A2g12 +A3g13. (1.2.4)

In a similar manner, by considering the dot products ~A · ~E2 and ~A · ~E3 one can establish the results

A2 = A1g21 +A2g22 +A3g23 A3 = A1g31 +A2g32 +A3g33.

These results can be expressed with the index notation as

Ai = gikA
k. (1.2.6)

Forming the dot products ~A · ~E1, ~A · ~E2, ~A · ~E3 it can be verified that

Ai = gikAk. (1.2.7)

The equations (1.2.6) and (1.2.7) are relations which exist between the contravariant and covariant compo-

nents of the vector ~A. Similarly, if for some value j we have ~Ej = α ~E1 + β ~E2 + γ ~E3, then one can show

that ~Ej = gij ~Ei. This is left as an exercise.
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Coordinate Transformations

Consider a coordinate transformation from a set of coordinates (x, y, z) to (u, v, w) defined by a set of

transformation equations
x = x(u, v, w)

y = y(u, v, w)

z = z(u, v, w)

(1.2.8)

It is assumed that these transformations are single valued, continuous and possess the inverse transformation

u = u(x, y, z)

v = v(x, y, z)

w = w(x, y, z).

(1.2.9)

These transformation equations define a set of coordinate surfaces and coordinate curves. The coordinate

surfaces are defined by the equations
u(x, y, z) = c1

v(x, y, z) = c2

w(x, y, z) = c3

(1.2.10)

where c1, c2, c3 are constants. These surfaces intersect in the coordinate curves

~r(u, c2, c3), ~r(c1, v, c3), ~r(c1, c2, w), (1.2.11)

where

~r(u, v, w) = x(u, v, w) ê1 + y(u, v, w) ê2 + z(u, v, w) ê3.

The general situation is illustrated in the figure 1.2-1.

Consider the vectors

~E1 = gradu = ∇u, ~E2 = gradv = ∇v, ~E3 = gradw = ∇w (1.2.12)

evaluated at the common point of intersection (c1, c2, c3) of the coordinate surfaces. The system of vectors

( ~E1, ~E2, ~E3) can be selected as a system of basis vectors which are normal to the coordinate surfaces.

Similarly, the vectors
~E1 =

∂~r

∂u
, ~E2 =

∂~r

∂v
, ~E3 =

∂~r

∂w
(1.2.13)

when evaluated at the common point of intersection (c1, c2, c3) forms a system of vectors (~E1, ~E2, ~E3) which

we can select as a basis. This basis is a set of tangent vectors to the coordinate curves. It is now demonstrated

that the normal basis ( ~E1, ~E2, ~E3) and the tangential basis (~E1, ~E2, ~E3) are a set of reciprocal bases.

Recall that ~r = x ê1 + y ê2 + z ê3 denotes the position vector of a variable point. By substitution for

x, y, z from (1.2.8) there results

~r = ~r(u, v, w) = x(u, v, w) ê1 + y(u, v, w) ê2 + z(u, v, w) ê3. (1.2.14)
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Figure 1.2-1. Coordinate curves and coordinate surfaces.

A small change in ~r is denoted

d~r = dx ê1 + dy ê2 + dz ê3 =
∂~r

∂u
du+

∂~r

∂v
dv +

∂~r

∂w
dw (1.2.15)

where
∂~r

∂u
=
∂x

∂u
ê1 +

∂y

∂u
ê2 +

∂z

∂u
ê3

∂~r

∂v
=
∂x

∂v
ê1 +

∂y

∂v
ê2 +

∂z

∂v
ê3

∂~r

∂w
=
∂x

∂w
ê1 +

∂y

∂w
ê2 +

∂z

∂w
ê3.

(1.2.16)

In terms of the u, v, w coordinates, this change can be thought of as moving along the diagonal of a paral-

lelepiped having the vector sides
∂~r

∂u
du,

∂~r

∂v
dv, and

∂~r

∂w
dw.

Assume u = u(x, y, z) is defined by equation (1.2.9) and differentiate this relation to obtain

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz. (1.2.17)

The equation (1.2.15) enables us to represent this differential in the form:

du = gradu · d~r

du = gradu ·
(
∂~r

∂u
du+

∂~r

∂v
dv +

∂~r

∂w
dw

)
du =

(
gradu · ∂~r

∂u

)
du+

(
gradu · ∂~r

∂v

)
dv +

(
gradu · ∂~r

∂w

)
dw.

(1.2.18)

By comparing like terms in this last equation we find that

~E1 · ~E1 = 1, ~E1 · ~E2 = 0, ~E1 · ~E3 = 0. (1.2.19)

Similarly, from the other equations in equation (1.2.9) which define v = v(x, y, z), and w = w(x, y, z) it

can be demonstrated that

dv =
(

grad v · ∂~r
∂u

)
du+

(
grad v · ∂~r

∂v

)
dv +

(
grad v · ∂~r

∂w

)
dw (1.2.20)
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and

dw =
(

gradw · ∂~r
∂u

)
du+

(
gradw · ∂~r

∂v

)
dv +

(
gradw · ∂~r

∂w

)
dw. (1.2.21)

By comparing like terms in equations (1.2.20) and (1.2.21) we find

~E2 · ~E1 = 0, ~E2 · ~E2 = 1, ~E2 · ~E3 = 0

~E3 · ~E1 = 0, ~E3 · ~E2 = 0, ~E3 · ~E3 = 1.
(1.2.22)

The equations (1.2.22) and (1.2.19) show us that the basis vectors defined by equations (1.2.12) and (1.2.13)

are reciprocal.

Introducing the notation

(x1, x2, x3) = (u, v, w) (y1, y2, y3) = (x, y, z) (1.2.23)

where the x′s denote the generalized coordinates and the y′s denote the rectangular Cartesian coordinates,

the above equations can be expressed in a more concise form with the index notation. For example, if

xi = xi(x, y, z) = xi(y1, y2, y3), and yi = yi(u, v, w) = yi(x1, x2, x3), i = 1, 2, 3 (1.2.24)

then the reciprocal basis vectors can be represented

~Ei = gradxi, i = 1, 2, 3 (1.2.25)

and
~Ei =

∂~r

∂xi
, i = 1, 2, 3. (1.2.26)

We now show that these basis vectors are reciprocal. Observe that ~r = ~r(x1, x2, x3) with

d~r =
∂~r

∂xm
dxm (1.2.27)

and consequently

dxi = gradxi · d~r = gradxi · ∂~r

∂xm
dxm =

(
~Ei · ~Em

)
dxm = δi

m dxm, i = 1, 2, 3 (1.2.28)

Comparing like terms in this last equation establishes the result that

~Ei · ~Em = δi
m, i,m = 1, 2, 3 (1.2.29)

which demonstrates that the basis vectors are reciprocal.
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Scalars, Vectors and Tensors

Tensors are quantities which obey certain transformation laws. That is, scalars, vectors, matrices

and higher order arrays can be thought of as components of a tensor quantity. We shall be interested in

finding how these components are represented in various coordinate systems. We desire knowledge of these

transformation laws in order that we can represent various physical laws in a form which is independent of

the coordinate system chosen. Before defining different types of tensors let us examine what we mean by a

coordinate transformation.

Coordinate transformations of the type found in equations (1.2.8) and (1.2.9) can be generalized to

higher dimensions. Let xi, i = 1, 2, . . . , N denote N variables. These quantities can be thought of as

representing a variable point (x1, x2, . . . , xN ) in an N dimensional space VN . Another set of N quantities,

call them barred quantities, xi, i = 1, 2, . . . , N, can be used to represent a variable point (x1, x2, . . . , xN ) in

an N dimensional space V N . When the x′s are related to the x′s by equations of the form

xi = xi(x1, x2, . . . , xN ), i = 1, 2, . . . , N (1.2.30)

then a transformation is said to exist between the coordinates xi and xi, i = 1, 2, . . . , N. Whenever the

relations (1.2.30) are functionally independent, single valued and possess partial derivatives such that the

Jacobian of the transformation

J
(x
x

)
= J

(
x1, x2, . . . , xN

x1, x2, . . . , xN

)
=

∣∣∣∣∣∣∣
∂x1

∂x1
∂x1

∂x2 . . . ∂x1

∂xN

...
... . . .

...
∂xN

∂x1
∂xN

∂x2 . . . ∂xN

∂xN

∣∣∣∣∣∣∣ (1.2.31)

is different from zero, then there exists an inverse transformation

xi = xi(x1, x2, . . . , xN ), i = 1, 2, . . . , N. (1.2.32)

For brevity the transformation equations (1.2.30) and (1.2.32) are sometimes expressed by the notation

xi = xi(x), i = 1, . . . , N and xi = xi(x), i = 1, . . . , N. (1.2.33)

Consider a sequence of transformations from x to x̄ and then from x̄ to ¯̄x coordinates. For simplicity

let x̄ = y and ¯̄x = z. If we denote by T1, T2 and T3 the transformations

T1 : yi = yi(x1, . . . , xN ) i = 1, . . . , N or T1x = y

T2 : zi = zi(y1, . . . , yN) i = 1, . . . , N or T2y = z

Then the transformation T3 obtained by substituting T1 into T2 is called the product of two successive

transformations and is written

T3 : zi = zi(y1(x1, . . . , xN ), . . . , yN(x1, . . . , xN )) i = 1, . . . , N or T3x = T2T1x = z.

This product transformation is denoted symbolically by T3 = T2T1.

The Jacobian of the product transformation is equal to the product of Jacobians associated with the

product transformation and J3 = J2J1.
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Transformations Form a Group

A group G is a nonempty set of elements together with a law, for combining the elements. The combined

elements are denoted by a product. Thus, if a and b are elements in G then no matter how you define the

law for combining elements, the product combination is denoted ab. The set G and combining law forms a

group if the following properties are satisfied:

(i) For all a, b ∈ G, then ab ∈ G. This is called the closure property.

(ii) There exists an identity element I such that for all a ∈ G we have Ia = aI = a.

(iii) There exists an inverse element. That is, for all a ∈ G there exists an inverse element a−1 such that

a a−1 = a−1a = I.

(iv) The associative law holds under the combining law and a(bc) = (ab)c for all a, b, c ∈ G.
For example, the set of elements G = {1,−1, i,−i}, where i2 = −1 together with the combining law of

ordinary multiplication, forms a group. This can be seen from the multiplication table.

× 1 -1 i -i
1 1 -1 i -i

-1 -1 1 -i i
-i -i i 1 -1
i i -i -1 1

The set of all coordinate transformations of the form found in equation (1.2.30), with Jacobian different

from zero, forms a group because:

(i) The product transformation, which consists of two successive transformations, belongs to the set of

transformations. (closure)

(ii) The identity transformation exists in the special case that x and x are the same coordinates.

(iii) The inverse transformation exists because the Jacobian of each individual transformation is different

from zero.

(iv) The associative law is satisfied in that the transformations satisfy the property T3(T2T1) = (T3T2)T1.

When the given transformation equations contain a parameter the combining law is often times repre-

sented as a product of symbolic operators. For example, we denote by Tα a transformation of coordinates

having a parameter α. The inverse transformation can be denoted by T−1
α and one can write Tαx = x or

x = T−1
α x. We let Tβ denote the same transformation, but with a parameter β, then the transitive property

is expressed symbolically by TαTβ = Tγ where the product TαTβ represents the result of performing two

successive transformations. The first coordinate transformation uses the given transformation equations and

uses the parameter α in these equations. This transformation is then followed by another coordinate trans-

formation using the same set of transformation equations, but this time the parameter value is β. The above

symbolic product is used to demonstrate that the result of applying two successive transformations produces

a result which is equivalent to performing a single transformation of coordinates having the parameter value

γ. Usually some relationship can then be established between the parameter values α, β and γ.
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Figure 1.2-2. Cylindrical coordinates.

In this symbolic notation, we let Tθ denote the identity transformation. That is, using the parameter

value of θ in the given set of transformation equations produces the identity transformation. The inverse

transformation can then be expressed in the form of finding the parameter value β such that TαTβ = Tθ.

Cartesian Coordinates

At times it is convenient to introduce an orthogonal Cartesian coordinate system having coordinates

yi, i = 1, 2, . . . , N. This space is denoted EN and represents an N-dimensional Euclidean space. Whenever

the generalized independent coordinates xi, i = 1, . . . , N are functions of the y′s, and these equations are

functionally independent, then there exists independent transformation equations

yi = yi(x1, x2, . . . , xN ), i = 1, 2, . . . , N, (1.2.34)

with Jacobian different from zero. Similarly, if there is some other set of generalized coordinates, say a barred

system xi, i = 1, . . . , N where the x′s are independent functions of the y′s, then there will exist another set

of independent transformation equations

yi = yi(x1, x2, . . . , xN ), i = 1, 2, . . . , N, (1.2.35)

with Jacobian different from zero. The transformations found in the equations (1.2.34) and (1.2.35) imply

that there exists relations between the x′s and x′s of the form (1.2.30) with inverse transformations of the

form (1.2.32). It should be remembered that the concepts and ideas developed in this section can be applied

to a space VN of any finite dimension. Two dimensional surfaces (N = 2) and three dimensional spaces

(N = 3) will occupy most of our applications. In relativity, one must consider spaces where N = 4.

EXAMPLE 1.2-1. (cylindrical coordinates (r, θ, z)) Consider the transformation

x = x(r, θ, z) = r cos θ y = y(r, θ, z) = r sin θ z = z(r, θ, z) = z

from rectangular coordinates (x, y, z) to cylindrical coordinates (r, θ, z), illustrated in the figure 1.2-2. By

letting

y1 = x, y2 = y, y3 = z x1 = r, x2 = θ, x3 = z

the above set of equations are examples of the transformation equations (1.2.8) with u = r, v = θ, w = z as

the generalized coordinates.
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EXAMPLE 1.2.2. (Spherical Coordinates) (ρ, θ, φ)

Consider the transformation

x = x(ρ, θ, φ) = ρ sin θ cosφ y = y(ρ, θ, φ) = ρ sin θ sinφ z = z(ρ, θ, φ) = ρ cos θ

from rectangular coordinates (x, y, z) to spherical coordinates (ρ, θ, φ). By letting

y1 = x, y2 = y, y3 = z x1 = ρ, x2 = θ , x3 = φ

the above set of equations has the form found in equation (1.2.8) with u = ρ, v = θ, w = φ the generalized

coordinates. One could place bars over the x′s in this example in order to distinguish these coordinates from

the x′s of the previous example. The spherical coordinates (ρ, θ, φ) are illustrated in the figure 1.2-3.

Figure 1.2-3. Spherical coordinates.

Scalar Functions and Invariance

We are now at a point where we can begin to define what tensor quantities are. The first definition is

for a scalar invariant or tensor of order zero.
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Definition: ( Absolute scalar field) Assume there exists a coordinate

transformation of the type (1.2.30) with Jacobian J different from zero. Let

the scalar function

f = f(x1, x2, . . . , xN ) (1.2.36)

be a function of the coordinates xi, i = 1, . . . , N in a space VN . Whenever

there exists a function

f = f(x1, x2, . . . , xN ) (1.2.37)

which is a function of the coordinates xi, i = 1, . . . , N such that f = JW f,

then f is called a tensor of rank or order zero of weight W in the space VN .

Whenever W = 0, the scalar f is called the component of an absolute scalar

field and is referred to as an absolute tensor of rank or order zero.

That is, an absolute scalar field is an invariant object in the space VN with respect to the group of

coordinate transformations. It has a single component in each coordinate system. For any scalar function

of the type defined by equation (1.2.36), we can substitute the transformation equations (1.2.30) and obtain

f = f(x1, . . . , xN ) = f(x1(x), . . . , xN (x)) = f(x1, . . . , xN ). (1.2.38)

Vector Transformation, Contravariant Components

In VN consider a curve C defined by the set of parametric equations

C : xi = xi(t), i = 1, . . . , N

where t is a parameter. The tangent vector to the curve C is the vector

~T =
(
dx1

dt
,
dx2

dt
, . . . ,

dxN

dt

)
.

In index notation, which focuses attention on the components, this tangent vector is denoted

T i =
dxi

dt
, i = 1, . . . , N.

For a coordinate transformation of the type defined by equation (1.2.30) with its inverse transformation

defined by equation (1.2.32), the curve C is represented in the barred space by

xi = xi(x1(t), x2(t), . . . , xN (t)) = xi(t), i = 1, . . . , N,

with t unchanged. The tangent to the curve in the barred system of coordinates is represented by

dxi

dt
=
∂xi

∂xj

dxj

dt
, i = 1, . . . , N. (1.2.39)
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Letting T
i
, i = 1, . . . , N denote the components of this tangent vector in the barred system of coordinates,

the equation (1.2.39) can then be expressed in the form

T
i
=
∂xi

∂xj
T j, i, j = 1, . . . , N. (1.2.40)

This equation is said to define the transformation law associated with an absolute contravariant tensor of

rank or order one. In the case N = 3 the matrix form of this transformation is representedT
1

T
2

T
3

 =


∂x1

∂x1
∂x1

∂x2
∂x1

∂x3

∂x2

∂x1
∂x2

∂x2
∂x2

∂x3

∂x3

∂x1
∂x3

∂x2
∂x3

∂x3


T 1

T 2

T 3

 (1.2.41)

A more general definition is

Definition: (Contravariant tensor) Whenever N quantities Ai in

a coordinate system (x1, . . . , xN ) are related to N quantities A
i

in a

coordinate system (x1, . . . , xN) such that the Jacobian J is different

from zero, then if the transformation law

A
i
= JW ∂xi

∂xj
Aj

is satisfied, these quantities are called the components of a relative tensor

of rank or order one with weight W . Whenever W = 0 these quantities

are called the components of an absolute tensor of rank or order one.

We see that the above transformation law satisfies the group properties.

EXAMPLE 1.2-3. (Transitive Property of Contravariant Transformation)

Show that successive contravariant transformations is also a contravariant transformation.

Solution: Consider the transformation of a vector from an unbarred to a barred system of coordinates. A

vector or absolute tensor of rank one Ai = Ai(x), i = 1, . . . , N will transform like the equation (1.2.40) and

A
i
(x) =

∂xi

∂xj
Aj(x). (1.2.42)

Another transformation from x→ x coordinates will produce the components

A
i
(x) =

∂x
i

∂xjA
j
(x) (1.2.43)

Here we have used the notation Aj(x) to emphasize the dependence of the components Aj upon the x

coordinates. Changing indices and substituting equation (1.2.42) into (1.2.43) we find

A
i
(x) =

∂x
i

∂xj

∂xj

∂xm
Am(x). (1.2.44)
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From the fact that
∂x

i

∂xj

∂xj

∂xm
=

∂x
i

∂xm
,

the equation (1.2.44) simplifies to

A
i
(x) =

∂x
i

∂xm
Am(x) (1.2.45)

and hence this transformation is also contravariant. We express this by saying that the above are transitive

with respect to the group of coordinate transformations.

Note that from the chain rule one can write

∂xm

∂xj

∂xj

∂xn
=
∂xm

∂x1

∂x1

∂xn
+
∂xm

∂x2

∂x2

∂xn
+
∂xm

∂x3

∂x3

∂xn
=
∂xm

∂xn
= δm

n .

Do not make the mistake of writing

∂xm

∂x2

∂x2

∂xn
=
∂xm

∂xn
or

∂xm

∂x3

∂x3

∂xn
=
∂xm

∂xn

as these expressions are incorrect. Note that there are no summations in these terms, whereas there is a

summation index in the representation of the chain rule.

Vector Transformation, Covariant Components

Consider a scalar invariant A(x) = A(x) which is a shorthand notation for the equation

A(x1, x2, . . . , xn) = A(x1, x2, . . . , xn)

involving the coordinate transformation of equation (1.2.30). By the chain rule we differentiate this invariant

and find that the components of the gradient must satisfy

∂A

∂xi =
∂A

∂xj

∂xj

∂xi . (1.2.46)

Let

Aj =
∂A

∂xj
and Ai =

∂A

∂xi
,

then equation (1.2.46) can be expressed as the transformation law

Ai = Aj
∂xj

∂xi . (1.2.47)

This is the transformation law for an absolute covariant tensor of rank or order one. A more general definition

is
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Definition: (Covariant tensor) Whenever N quantities Ai in a

coordinate system (x1, . . . , xN ) are related to N quantities Ai in a co-

ordinate system (x1, . . . , xN ), with Jacobian J different from zero, such

that the transformation law

Ai = JW ∂xj

∂xiAj (1.2.48)

is satisfied, then these quantities are called the components of a relative

covariant tensor of rank or order one having a weight of W . When-

ever W = 0, these quantities are called the components of an absolute

covariant tensor of rank or order one.

Again we note that the above transformation satisfies the group properties. Absolute tensors of rank or

order one are referred to as vectors while absolute tensors of rank or order zero are referred to as scalars.

EXAMPLE 1.2-4. (Transitive Property of Covariant Transformation)

Consider a sequence of transformation laws of the type defined by the equation (1.2.47)

x→ x

x→ x

Ai(x) = Aj(x)
∂xj

∂xi

Ak(x) = Am(x)
∂xm

∂x
k

We can therefore express the transformation of the components associated with the coordinate transformation

x→ x and

Ak(x) =
(
Aj(x)

∂xj

∂xm

)
∂xm

∂x
k

= Aj(x)
∂xj

∂x
k
,

which demonstrates the transitive property of a covariant transformation.

Higher Order Tensors

We have shown that first order tensors are quantities which obey certain transformation laws. Higher

order tensors are defined in a similar manner and also satisfy the group properties. We assume that we are

given transformations of the type illustrated in equations (1.2.30) and (1.2.32) which are single valued and

continuous with Jacobian J different from zero. Further, the quantities xi and xi, i = 1, . . . , n represent the

coordinates in any two coordinate systems. The following transformation laws define second order and third

order tensors.
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Definition: (Second order contravariant tensor) Whenever N-squared quantities Aij

in a coordinate system (x1, . . . , xN ) are related to N-squared quantities A
mn

in a coordinate

system (x1, . . . , xN ) such that the transformation law

A
mn

(x) = Aij(x)JW ∂xm

∂xi

∂xn

∂xj
(1.2.49)

is satisfied, then these quantities are called components of a relative contravariant tensor of

rank or order two with weight W . WheneverW = 0 these quantities are called the components

of an absolute contravariant tensor of rank or order two.

Definition: (Second order covariant tensor) Whenever N-squared quantities

Aij in a coordinate system (x1, . . . , xN ) are related to N-squared quantities Amn

in a coordinate system (x1, . . . , xN ) such that the transformation law

Amn(x) = Aij(x)JW ∂xi

∂xm

∂xj

∂xn (1.2.50)

is satisfied, then these quantities are called components of a relative covariant tensor

of rank or order two with weight W . Whenever W = 0 these quantities are called

the components of an absolute covariant tensor of rank or order two.

Definition: (Second order mixed tensor) Whenever N-squared quantities

Ai
j in a coordinate system (x1, . . . , xN ) are related to N-squared quantities A

m

n in

a coordinate system (x1, . . . , xN ) such that the transformation law

A
m

n (x) = Ai
j(x)J

W ∂xm

∂xi

∂xj

∂xn (1.2.51)

is satisfied, then these quantities are called components of a relative mixed tensor of

rank or order two with weight W . Whenever W = 0 these quantities are called the

components of an absolute mixed tensor of rank or order two. It is contravariant

of order one and covariant of order one.

Higher order tensors are defined in a similar manner. For example, if we can find N-cubed quantities

Am
np such that

A
i

jk(x) = Aγ
αβ(x)JW ∂xi

∂xγ

∂xα

∂xj

∂xβ

∂xk
(1.2.52)

then this is a relative mixed tensor of order three with weight W . It is contravariant of order one and

covariant of order two.
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General Definition

In general a mixed tensor of rank or order (m+ n)

T i1i2...im

j1j2...jn
(1.2.53)

is contravariant of order m and covariant of order n if it obeys the transformation law

T
i1i2...im

j1j2...jn
=
[
J
(x
x

)]W
T a1a2...am

b1b2...bn

∂xi1

∂xa1

∂xi2

∂xa2
· · · ∂x

im

∂xam
· ∂x

b1

∂xj1

∂xb2

∂xj2
· · · ∂x

bn

∂xjn
(1.2.54)

where

J
(x
x

)
=
∣∣∣∣∂x∂x

∣∣∣∣ =
∂(x1, x2, . . . , xN )
∂(x1, x2, . . . , xN )

is the Jacobian of the transformation. When W = 0 the tensor is called an absolute tensor, otherwise it is

called a relative tensor of weight W.

Here superscripts are used to denote contravariant components and subscripts are used to denote covari-

ant components. Thus, if we are given the tensor components in one coordinate system, then the components

in any other coordinate system are determined by the transformation law of equation (1.2.54). Throughout

the remainder of this text one should treat all tensors as absolute tensors unless specified otherwise.

Dyads and Polyads

Note that vectors can be represented in bold face type with the notation

A = AiEi

This notation can also be generalized to tensor quantities. Higher order tensors can also be denoted by bold

face type. For example the tensor components Tij and Bijk can be represented in terms of the basis vectors

Ei, i = 1, . . . , N by using a notation which is similar to that for the representation of vectors. For example,

T = TijEiEj

B = BijkEiEjEk.

Here T denotes a tensor with components Tij and B denotes a tensor with components Bijk . The quantities

EiEj are called unit dyads and EiEjEk are called unit triads. There is no multiplication sign between the

basis vectors. This notation is called a polyad notation. A further generalization of this notation is the

representation of an arbitrary tensor using the basis and reciprocal basis vectors in bold type. For example,

a mixed tensor would have the polyadic representation

T = T ij...k
lm...nEiEj . . .EkElEm . . .En.

A dyadic is formed by the outer or direct product of two vectors. For example, the outer product of the

vectors

a = a1E1 + a2E2 + a3E3 and b = b1E1 + b2E2 + b3E3
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gives the dyad
ab =a1b1E1E1 + a1b2E1E2 + a1b3E1E3

a2b1E2E1 + a2b2E2E2 + a2b3E2E3

a3b1E3E1 + a3b2E3E2 + a3b3E3E3.

In general, a dyad can be represented

A = AijEiEj i, j = 1, . . . , N

where the summation convention is in effect for the repeated indices. The coefficients Aij are called the

coefficients of the dyad. When the coefficients are written as an N × N array it is called a matrix. Every

second order tensor can be written as a linear combination of dyads. The dyads form a basis for the second

order tensors. As the example above illustrates, the nine dyads {E1E1 ,E1E2, . . . ,E3E3 }, associated with

the outer products of three dimensional base vectors, constitute a basis for the second order tensor A = ab

having the components Aij = aibj with i, j = 1, 2, 3. Similarly, a triad has the form

T = TijkEiEjEk Sum on repeated indices

where i, j, k have the range 1, 2, . . . , N. The set of outer or direct products {EiEjEk }, with i, j, k = 1, . . . , N

constitutes a basis for all third order tensors. Tensor components with mixed suffixes like Ci
jk are associated

with triad basis of the form

C = Ci
jkEiEjEk

where i, j, k have the range 1, 2, . . .N.Dyads are associated with the outer product of two vectors, while triads,

tetrads,... are associated with higher-order outer products. These higher-order outer or direct products are

referred to as polyads.

The polyad notation is a generalization of the vector notation. The subject of how polyad components

transform between coordinate systems is the subject of tensor calculus.

In Cartesian coordinates we have Ei = Ei = êi and a dyadic with components called dyads is written

A = Aij êi êj or
A =A11 ê1 ê1 +A12 ê1 ê2 +A13 ê1 ê3

A21 ê2 ê1 +A22 ê2 ê2 +A23 ê2 ê3

A31 ê3 ê1 +A32 ê3 ê2 +A33 ê3 ê3

where the terms êi êj are called unit dyads. Note that a dyadic has nine components as compared with a

vector which has only three components. The conjugate dyadic Ac is defined by a transposition of the unit

vectors in A, to obtain
Ac =A11 ê1 ê1 +A12 ê2 ê1 +A13 ê3 ê1

A21 ê1 ê2 +A22 ê2 ê2 +A23 ê3 ê2

A31 ê1 ê3 +A32 ê2 ê3 +A33 ê3 ê3
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If a dyadic equals its conjugate A = Ac, then Aij = Aji and the dyadic is called symmetric. If a dyadic

equals the negative of its conjugate A = −Ac, then Aij = −Aji and the dyadic is called skew-symmetric. A

special dyadic called the identical dyadic or idemfactor is defined by

J = ê1 ê1 + ê2 ê2 + ê3 ê3.

This dyadic has the property that pre or post dot product multiplication of J with a vector ~V produces the

same vector ~V . For example,
~V · J = (V1 ê1 + V2 ê2 + V3 ê3) · J

= V1 ê1 · ê1 ê1 + V2 ê2 · ê2 ê2 + V3 ê3 · ê3 ê3 = ~V

and J · ~V = J · (V1 ê1 + V2 ê2 + V3 ê3)

= V1 ê1 ê1 · ê1 + V2 ê2 ê2 · ê2 + V3 ê3 ê3 · ê3 = ~V

A dyadic operation often used in physics and chemistry is the double dot product A : B where A and

B are both dyadics. Here both dyadics are expanded using the distributive law of multiplication, and then

each unit dyad pair êi êj : êm ên are combined according to the rule

êi êj : êm ên = ( êi · êm)( êj · ên).

For example, if A = Aij êi êj and B = Bij êi êj, then the double dot product A : B is calculated as follows.

A : B = (Aij êi êj) : (Bmn êm ên) = AijBmn( êi êj : êm ên) = AijBmn( êi · êm)( êj · ên)

= AijBmnδimδjn = AmjBmj

= A11B11 +A12B12 +A13B13

+A21B21 +A22B22 +A23B23

+A31B31 +A32B32 +A33B33

When operating with dyads, triads and polyads, there is a definite order to the way vectors and polyad

components are represented. For example, for ~A = Ai êi and ~B = Bi êi vectors with outer product

~A~B = AmBn êm ên = φ

there is produced the dyadic φ with components AmBn. In comparison, the outer product

~B ~A = BmAn êm ên = ψ

produces the dyadic ψ with components BmAn. That is

φ = ~A~B =A1B1 ê1 ê1 +A1B2 ê1 ê2 +A1B3 ê1 ê3

A2B1 ê2 ê1 +A2B2 ê2 ê2 +A2B3 ê2 ê3

A3B1 ê3 ê1 +A3B2 ê3 ê2 +A3B3 ê3 ê3

and ψ = ~B ~A =B1A1 ê1 ê1 +B1A2 ê1 ê2 +B1A3 ê1 ê3

B2A1 ê2 ê1 +B2A2 ê2 ê2 +B2A3 ê2 ê3

B3A1 ê3 ê1 +B3A2 ê3 ê2 +B3A3 ê3 ê3

are different dyadics.

The scalar dot product of a dyad with a vector ~C is defined for both pre and post multiplication as

φ · ~C = ~A~B · ~C = ~A( ~B · ~C)

~C · φ = ~C · ~A~B =(~C · ~A) ~B
These products are, in general, not equal.
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Operations Using Tensors

The following are some important tensor operations which are used to derive special equations and to

prove various identities.

Addition and Subtraction

Tensors of the same type and weight can be added or subtracted. For example, two third order mixed

tensors, when added, produce another third order mixed tensor. Let Ai
jk and Bi

jk denote two third order

mixed tensors. Their sum is denoted

Ci
jk = Ai

jk +Bi
jk.

That is, like components are added. The sum is also a mixed tensor as we now verify. By hypothesis Ai
jk

and Bi
jk are third order mixed tensors and hence must obey the transformation laws

A
i

jk = Am
np

∂xi

∂xm

∂xn

∂xj

∂xp

∂xk

B
i

jk = Bm
np

∂xi

∂xm

∂xn

∂xj

∂xp

∂xk
.

We let C
i

jk = A
i

jk + B
i

jk denote the sum in the transformed coordinates. Then the addition of the above

transformation equations produces

C
i

jk =
(
A

i

jk +B
i

jk

)
=
(
Am

np +Bm
np

) ∂xi

∂xm

∂xn

∂xj

∂xp

∂xk
= Cm

np

∂xi

∂xm

∂xn

∂xj

∂xp

∂xk
.

Consequently, the sum transforms as a mixed third order tensor.

Multiplication (Outer Product)

The product of two tensors is also a tensor. The rank or order of the resulting tensor is the sum of

the ranks of the tensors occurring in the multiplication. As an example, let Ai
jk denote a mixed third order

tensor and let Bl
m denote a mixed second order tensor. The outer product of these two tensors is the fifth

order tensor

Cil
jkm = Ai

jkB
l
m, i, j, k, l,m = 1, 2, . . . , N.

Here all indices are free indices as i, j, k, l,m take on any of the integer values 1, 2, . . . , N. Let A
i

jk and B
l

m

denote the components of the given tensors in the barred system of coordinates. We define C
il

jkm as the

outer product of these components. Observe that Cil
jkm is a tensor for by hypothesis Ai

jk and Bl
m are tensors

and hence obey the transformation laws

A
α

βγ = Ai
jk

∂xα

∂xi

∂xj

∂xβ

∂xk

∂xγ

B
δ

ε = Bl
m

∂xδ

∂xl

∂xm

∂xε .

(1.2.55)

The outer product of these components produces

C
αδ

βγε = A
α

βγB
δ

ε = Ai
jkB

l
m

∂xα

∂xi

∂xj

∂xβ

∂xk

∂xγ

∂xδ

∂xl

∂xm

∂xε

= Cil
jkm

∂xα

∂xi

∂xj

∂xβ

∂xk

∂xγ

∂xδ

∂xl

∂xm

∂xε

(1.2.56)

which demonstrates that Cil
jkm transforms as a mixed fifth order absolute tensor. Other outer products are

analyzed in a similar way.
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Contraction

The operation of contraction on any mixed tensor of rank m is performed when an upper index is

set equal to a lower index and the summation convention is invoked. When the summation is performed

over the repeated indices the resulting quantity is also a tensor of rank or order (m − 2). For example, let

Ai
jk, i, j, k = 1, 2, . . . , N denote a mixed tensor and perform a contraction by setting j equal to i. We obtain

Ai
ik = A1

1k +A2
2k + · · ·+AN

Nk = Ak (1.2.57)

where k is a free index. To show that Ak is a tensor, we let A
i

ik = Ak denote the contraction on the

transformed components of Ai
jk. By hypothesis Ai

jk is a mixed tensor and hence the components must

satisfy the transformation law

A
i

jk = Am
np

∂xi

∂xm

∂xn

∂xj

∂xp

∂xk
.

Now execute a contraction by setting j equal to i and perform a summation over the repeated index. We

find

A
i

ik = Ak = Am
np

∂xi

∂xm

∂xn

∂xi

∂xp

∂xk
= Am

np

∂xn

∂xm

∂xp

∂xk

= Am
npδ

n
m

∂xp

∂xk
= An

np

∂xp

∂xk
= Ap

∂xp

∂xk
.

(1.2.58)

Hence, the contraction produces a tensor of rank two less than the original tensor. Contractions on other

mixed tensors can be analyzed in a similar manner.

New tensors can be constructed from old tensors by performing a contraction on an upper and lower

index. This process can be repeated as long as there is an upper and lower index upon which to perform the

contraction. Each time a contraction is performed the rank of the resulting tensor is two less than the rank

of the original tensor.

Multiplication (Inner Product)

The inner product of two tensors is obtained by:
(i) first taking the outer product of the given tensors and

(ii) performing a contraction on two of the indices.

EXAMPLE 1.2-5. (Inner product)

Let Ai and Bj denote the components of two first order tensors (vectors). The outer product of these

tensors is

Ci
j = AiBj , i, j = 1, 2, . . . , N.

The inner product of these tensors is the scalar

C = AiBi = A1B1 +A2B2 + · · ·+ANBN .

Note that in some situations the inner product is performed by employing only subscript indices. For

example, the above inner product is sometimes expressed as

C = AiBi = A1B1 +A2B2 + · · ·ANBN .

This notation is discussed later when Cartesian tensors are considered.
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Quotient Law

Assume Bqs
r and Cs

p are arbitrary absolute tensors. Further assume we have a quantity A(ijk) which

we think might be a third order mixed tensor Ai
jk. By showing that the equation

Ar
qpB

qs
r = Cs

p

is satisfied, then it follows that Ar
qp must be a tensor. This is an example of the quotient law. Obviously,

this result can be generalized to apply to tensors of any order or rank. To prove the above assertion we shall

show from the above equation that Ai
jk is a tensor. Let xi and xi denote a barred and unbarred system of

coordinates which are related by transformations of the form defined by equation (1.2.30). In the barred

system, we assume that

A
r

qpB
qs

r = C
s

p (1.2.59)

where by hypothesis Bij
k and Cl

m are arbitrary absolute tensors and therefore must satisfy the transformation

equations

B
qs

r = Bij
k

∂xq

∂xi

∂xs

∂xj

∂xk

∂xr

C
s

p = Cl
m

∂xs

∂xl

∂xm

∂xp .

We substitute for B
qs

r and C
s

p in the equation (1.2.59) and obtain the equation

A
r

qp

(
Bij

k

∂xq

∂xi

∂xs

∂xj

∂xk

∂xr

)
=
(
Cl

m

∂xs

∂xl

∂xm

∂xp

)
= Ar

qmB
ql
r

∂xs

∂xl

∂xm

∂xp .

Since the summation indices are dummy indices they can be replaced by other symbols. We change l to j,

q to i and r to k and write the above equation as

∂xs

∂xj

(
A

r

qp

∂xq

∂xi

∂xk

∂xr −Ak
im

∂xm

∂xp

)
Bij

k = 0.

Use inner multiplication by ∂xn

∂xs and simplify this equation to the form

δn
j

[
A

r

qp

∂xq

∂xi

∂xk

∂xr −Ak
im

∂xm

∂xp

]
Bij

k = 0 or[
A

r

qp

∂xq

∂xi

∂xk

∂xr −Ak
im

∂xm

∂xp

]
Bin

k = 0.

Because Bin
k is an arbitrary tensor, the quantity inside the brackets is zero and therefore

A
r

qp

∂xq

∂xi

∂xk

∂xr −Ak
im

∂xm

∂xp = 0.

This equation is simplified by inner multiplication by ∂xi

∂xj
∂xl

∂xk to obtain

δq
j δ

l
rA

r

qp −Ak
im

∂xm

∂xp

∂xi

∂xj

∂xl

∂xk
= 0 or

A
l

jp = Ak
im

∂xm

∂xp

∂xi

∂xj

∂xl

∂xk

which is the transformation law for a third order mixed tensor.
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EXERCISE 1.2

I 1. Consider the transformation equations representing a rotation of axes through an angle α.

Tα :
{
x1 = x1 cosα− x2 sinα
x2 = x1 sinα+ x2 cosα

Treat α as a parameter and show this set of transformations constitutes a group by finding the value of α

which:

(i) gives the identity transformation.

(ii) gives the inverse transformation.

(iii) show the transformation is transitive in that a transformation with α = θ1 followed by a transformation

with α = θ2 is equivalent to the transformation using α = θ1 + θ2.

I 2. Show the transformation

Tα :
{
x1 = αx1

x2 = 1
αx

2

forms a group with α as a parameter. Find the value of α such that:

(i) the identity transformation exists.

(ii) the inverse transformation exists.

(iii) the transitive property is satisfied.

I 3. Show the given transformation forms a group with parameter α.

Tα :

{
x1 = x1

1−αx1

x2 = x2

1−αx1

I 4. Consider the Lorentz transformation from relativity theory having the velocity parameter V, c is the

speed of light and x4 = t is time.

TV :



x1 = x1−V x4√
1−V 2

c2

x2 = x2

x3 = x3

x4 =
x4−V x1

c2√
1−V 2

c2

Show this set of transformations constitutes a group, by establishing:

(i) V = 0 gives the identity transformation T0.

(ii) TV2 · TV1 = T0 requires that V2 = −V1.

(iii) TV2 · TV1 = TV3 requires that

V3 =
V1 + V2

1 + V1V2
c2

.

I 5. For ( ~E1, ~E2, ~E3) an arbitrary independent basis, (a) Verify that

~E1 =
1
V
~E2 × ~E3, ~E2 =

1
V
~E3 × ~E1, ~E3 =

1
V
~E1 × ~E2

is a reciprocal basis, where V = ~E1 · ( ~E2 × ~E3) (b) Show that ~Ej = gij ~Ei.
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Figure 1.2-4. Cylindrical coordinates (r, β, z).

I 6. For the cylindrical coordinates (r, β, z) illustrated in the figure 1.2-4.

(a) Write out the transformation equations from rectangular (x, y, z) coordinates to cylindrical (r, β, z)

coordinates. Also write out the inverse transformation.

(b) Determine the following basis vectors in cylindrical coordinates and represent your results in terms of

cylindrical coordinates.

(i) The tangential basis ~E1, ~E2, ~E3. (ii)The normal basis ~E1, ~E2, ~E3. (iii) êr, êβ , êz

where êr, êβ, êz are normalized vectors in the directions of the tangential basis.

(c) A vector ~A = Ax ê1 +Ay ê2 +Az ê3 can be represented in any of the forms:

~A = A1 ~E1 +A2 ~E2 +A3 ~E3

~A = A1
~E1 +A2

~E2 +A3
~E3

~A = Arêr +Aβ êβ +Azêz

depending upon the basis vectors selected . In terms of the components Ax, Ay, Az

(i) Solve for the contravariant components A1, A2, A3.

(ii) Solve for the covariant components A1, A2, A3.

(iii) Solve for the components Ar, Aβ , Az. Express all results in cylindrical coordinates. (Note the

components Ar, Aβ , Az are referred to as physical components. Physical components are considered in

more detail in a later section.)
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Figure 1.2-5. Spherical coordinates (ρ, α, β).

I 7. For the spherical coordinates (ρ, α, β) illustrated in the figure 1.2-5.

(a) Write out the transformation equations from rectangular (x, y, z) coordinates to spherical (ρ, α, β) co-

ordinates. Also write out the equations which describe the inverse transformation.

(b) Determine the following basis vectors in spherical coordinates

(i) The tangential basis ~E1, ~E2, ~E3.

(ii) The normal basis ~E1, ~E2, ~E3.

(iii) êρ, êα, êβ which are normalized vectors in the directions of the tangential basis. Express all results

in terms of spherical coordinates.

(c) A vector ~A = Ax ê1 +Ay ê2 +Az ê3 can be represented in any of the forms:

~A = A1 ~E1 +A2 ~E2 +A3 ~E3

~A = A1
~E1 +A2

~E2 +A3
~E3

~A = Aρêρ +Aαêα +Aβ êβ

depending upon the basis vectors selected . Calculate, in terms of the coordinates (ρ, α, β) and the

components Ax, Ay, Az

(i) The contravariant components A1, A2, A3.

(ii) The covariant components A1, A2, A3.

(iii) The components Aρ, Aα, Aβ which are called physical components.

I 8. Work the problems 6,7 and then let (x1, x2, x3) = (r, β, z) denote the coordinates in the cylindrical

system and let (x1, x2, x3) = (ρ, α, β) denote the coordinates in the spherical system.

(a) Write the transformation equations x → x from cylindrical to spherical coordinates. Also find the

inverse transformations. ( Hint: See the figures 1.2-4 and 1.2-5.)

(b) Use the results from part (a) and the results from problems 6,7 to verify that

Ai = Aj
∂xj

∂xi for i = 1, 2, 3.

(i.e. Substitute Aj from problem 6 to get Āi given in problem 7.)
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(c) Use the results from part (a) and the results from problems 6,7 to verify that

A
i
= Aj ∂x

i

∂xj
for i = 1, 2, 3.

(i.e. Substitute Aj from problem 6 to get Āi given by problem 7.)

I 9. Pick two arbitrary noncolinear vectors in the x, y plane, say

~V1 = 5 ê1 + ê2 and ~V2 = ê1 + 5 ê2

and let ~V3 = ê3 be a unit vector perpendicular to both ~V1 and ~V2. The vectors ~V1 and ~V2 can be thought of

as defining an oblique coordinate system, as illustrated in the figure 1.2-6.

(a) Find the reciprocal basis (~V 1, ~V 2, ~V 3).

(b) Let

~r = x ê1 + y ê2 + z ê3 = α~V1 + β~V2 + γ~V3

and show that
α =

5x
24

− y

24

β = − x

24
+

5y
24

γ = z

(c) Show
x = 5α+ β

y = α+ 5β

z = γ

(d) For γ = γ0 constant, show the coordinate lines are described by α = constant and β = constant,

and sketch some of these coordinate lines. (See figure 1.2-6.)

(e) Find the metrics gij and conjugate metrices gij associated with the (α, β, γ) space.

Figure 1.2-6. Oblique coordinates.
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I 10. Consider the transformation equations

x = x(u, v, w)

y = y(u, v, w)

z = z(u, v, w)

substituted into the position vector

~r = x ê1 + y ê2 + z ê3.

Define the basis vectors

( ~E1, ~E2, ~E3) =
(
∂~r

∂u
,
∂~r

∂v
,
∂~r

∂w

)
with the reciprocal basis

~E1 =
1
V
~E2 × ~E3, ~E2 =

1
V
~E3 × ~E1, ~E3 =

1
V
~E1 × ~E2.

where

V = ~E1 · ( ~E2 × ~E3).

Let v = ~E1 · ( ~E2 × ~E3) and show that v · V = 1.

I 11. Given the coordinate transformation

x = −u− 2v y = −u− v z = z

(a) Find and illustrate graphically some of the coordinate curves.

(b) For ~r = ~r(u, v, z) a position vector, define the basis vectors

~E1 =
∂~r

∂u
, ~E2 =

∂~r

∂v
, ~E3 =

∂~r

∂z
.

Calculate these vectors and then calculate the reciprocal basis ~E1, ~E2, ~E3.

(c) With respect to the basis vectors in (b) find the contravariant components Ai associated with the vector

~A = α1 ê1 + α2 ê2 + α3 ê3

where (α1, α2, α3) are constants.

(d) Find the covariant components Ai associated with the vector ~A given in part (c).

(e) Calculate the metric tensor gij and conjugate metric tensor gij .

(f) From the results (e), verify that gijg
jk = δk

i

(g) Use the results from (c)(d) and (e) to verify that Ai = gikA
k

(h) Use the results from (c)(d) and (e) to verify that Ai = gikAk

(i) Find the projection of the vector ~A on unit vectors in the directions ~E1, ~E2, ~E3.

(j) Find the projection of the vector ~A on unit vectors the directions ~E1, ~E2, ~E3.
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I 12. For ~r = yi êi where yi = yi(x1, x2, x3), i = 1, 2, 3 we have by definition

~Ej =
∂~r

∂xj
=
∂yi

∂xj
êi. From this relation show that ~Em =

∂xm

∂yj
êj

and consequently

gij = ~Ei · ~Ej =
∂ym

∂xi

∂ym

∂xj
, and gij = ~Ei · ~Ej =

∂xi

∂ym

∂xj

∂ym
, i, j,m = 1, . . . , 3

I 13. Consider the set of all coordinate transformations of the form

yi = ai
jx

j + bi

where ai
j and bi are constants and the determinant of ai

j is different from zero. Show this set of transforma-

tions forms a group.

I 14. For αi , βi constants and t a parameter, xi = αi + t βi,i = 1, 2, 3 is the parametric representation of

a straight line. Find the parametric equation of the line which passes through the two points (1, 2, 3) and

(14, 7,−3). What does the vector d~r
dt represent?

I 15. A surface can be represented using two parameters u, v by introducing the parametric equations

xi = xi(u, v), i = 1, 2, 3, a < u < b and c < v < d.

The parameters u, v are called the curvilinear coordinates of a point on the surface. A point on the surface

can be represented by the position vector ~r = ~r(u, v) = x1(u, v) ê1 + x2(u, v) ê2 + x3(u, v) ê3. The vectors ∂~r
∂u

and ∂~r
∂v are tangent vectors to the coordinate surface curves ~r(u, c2) and ~r(c1, v) respectively. An element of

surface area dS on the surface is defined as the area of the elemental parallelogram having the vector sides
∂~r
∂udu and ∂~r

∂vdv. Show that

dS = | ∂~r
∂u

× ∂~r

∂v
| dudv =

√
g11g22 − (g12)2 dudv

where

g11 =
∂~r

∂u
· ∂~r
∂u

g12 =
∂~r

∂u
· ∂~r
∂v

g22 =
∂~r

∂v
· ∂~r
∂v
.

Hint: ( ~A× ~B) · ( ~A× ~B) = | ~A× ~B|2 See Exercise 1.1, problem 9(c).

I 16.

(a) Use the results from problem 15 and find the element of surface area of the circular cone

x = u sinα cos v y = u sinα sin v z = u cosα

α a constant 0 ≤ u ≤ b 0 ≤ v ≤ 2π

(b) Find the surface area of the above cone.



61

I 17. The equation of a plane is defined in terms of two parameters u and v and has the form

xi = αi u+ βi v + γi i = 1, 2, 3,

where αi βi and γi are constants. Find the equation of the plane which passes through the points (1, 2, 3),

(14, 7,−3) and (5, 5, 5). What does this problem have to do with the position vector ~r(u, v), the vectors
∂~r
∂u , ∂~r

∂v and ~r(0, 0)? Hint: See problem 15.

I 18. Determine the points of intersection of the curve x1 = t, x2 = (t)2, x3 = (t)3 with the plane

8 x1 − 5 x2 + x3 − 4 = 0.

I 19. Verify the relations V eijk
~Ek = ~Ei × ~Ej and v−1 eijk ~Ek = ~Ei × ~Ej where v = ~E1 · ( ~E2 × ~E3) and

V = ~E1 · ( ~E2 × ~E3)..

I 20. Let x̄i and xi, i = 1, 2, 3 be related by the linear transformation x̄i = cijx
j , where cij are constants

such that the determinant c = det(cij) is different from zero. Let γn
m denote the cofactor of cmn divided by

the determinant c.

(a) Show that cijγ
j
k = γi

jc
j
k = δi

k.

(b) Show the inverse transformation can be expressed xi = γi
j x̄

j .

(c) Show that if Ai is a contravariant vector, then its transformed components are Āp = cpqA
q.

(d) Show that if Ai is a covariant vector, then its transformed components are Āi = γp
i Ap.

I 21. Show that the outer product of two contravariant vectors Ai and Bi, i = 1, 2, 3 results in a second

order contravariant tensor.

I 22. Show that for the position vector ~r = yi(x1, x2, x3) êi the element of arc length squared is

ds2 = d~r · d~r = gijdx
idxj where gij = ~Ei · ~Ej =

∂ym

∂xi

∂ym

∂xj
.

I 23. For Ai
jk, B

m
n and Cp

tq absolute tensors, show that if Ai
jkB

k
n = Ci

jn then A
i

jkB
k

n = C
i

jn.

I 24. Let Aij denote an absolute covariant tensor of order 2. Show that the determinant A = det(Aij) is

an invariant of weight 2 and
√

(A) is an invariant of weight 1.

I 25. Let Bij denote an absolute contravariant tensor of order 2. Show that the determinant B = det(Bij)

is an invariant of weight −2 and
√
B is an invariant of weight −1.

I 26.

(a) Write out the contravariant components of the following vectors

(i) ~E1 (ii) ~E2 (iii) ~E3 where ~Ei =
∂~r

∂xi
for i = 1, 2, 3.

(b) Write out the covariant components of the following vectors

(i) ~E1 (ii) ~E2 (ii) ~E3 where ~Ei = gradxi, for i = 1, 2, 3.
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I 27. Let Aij and Aij denote absolute second order tensors. Show that λ = AijA
ij is a scalar invariant.

I 28. Assume that aij , i, j = 1, 2, 3, 4 is a skew-symmetric second order absolute tensor. (a) Show that

bijk =
∂ajk

∂xi
+
∂aki

∂xj
+
∂aij

∂xk

is a third order tensor. (b) Show bijk is skew-symmetric in all pairs of indices and (c) determine the number

of independent components this tensor has.

I 29. Show the linear forms A1x + B1y + C1 and A2x + B2y + C2, with respect to the group of rotations

and translations x = x cos θ − y sin θ + h and y = x sin θ + y cos θ + k, have the forms A1x+ B1y + C1 and

A2x+B2y + C2. Also show that the quantities A1B2 −A2B1 and A1A2 +B1B2 are invariants.

I 30. Show that the curvature of a curve y = f(x) is κ = ± y′′(1+ y′2)−3/2 and that this curvature remains

invariant under the group of rotations given in the problem 1. Hint: Calculate dy
dx = dy

dx
dx
dx .

I 31. Show that when the equation of a curve is given in the parametric form x = x(t), y = y(t), then

the curvature is κ = ± ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
and remains invariant under the change of parameter t = t(t), where

ẋ = dx
dt , etc.

I 32. Let Aij
k denote a third order mixed tensor. (a) Show that the contraction Aij

i is a first order

contravariant tensor. (b) Show that contraction of i and j produces Aii
k which is not a tensor. This shows

that in general, the process of contraction does not always apply to indices at the same level.

I 33. Let φ = φ(x1, x2, . . . , xN ) denote an absolute scalar invariant. (a) Is the quantity ∂φ
∂xi a tensor? (b)

Is the quantity ∂2φ
∂xi∂xj a tensor?

I 34. Consider the second order absolute tensor aij , i, j = 1, 2 where a11 = 1, a12 = 2,a21 = 3 and a22 = 4.

Find the components of aij under the transformation of coordinates x1 = x1 + x2 and x2 = x1 − x2.

I 35. Let Ai,Bi denote the components of two covariant absolute tensors of order one. Show that

Cij = AiBj is an absolute second order covariant tensor.

I 36. Let Ai denote the components of an absolute contravariant tensor of order one and let Bi denote the

components of an absolute covariant tensor of order one, show that Ci
j = AiBj transforms as an absolute

mixed tensor of order two.

I 37. (a) Show the sum and difference of two tensors of the same kind is also a tensor of this kind. (b) Show

that the outer product of two tensors is a tensor. Do parts (a) (b) in the special case where one tensor Ai

is a relative tensor of weight 4 and the other tensor Bj
k is a relative tensor of weight 3. What is the weight

of the outer product tensor T ij
k = AiBj

k in this special case?

I 38. Let Aij
km denote the components of a mixed tensor of weight M . Form the contraction Bj

m = Aij
im

and determine how Bj
m transforms. What is its weight?

I 39. Let Ai
j denote the components of an absolute mixed tensor of order two. Show that the scalar

contraction S = Ai
i is an invariant.
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I 40. Let Ai = Ai(x1, x2, . . . , xN ) denote the components of an absolute contravariant tensor. Form the

quantity Bi
j = ∂Ai

∂xj and determine if Bi
j transforms like a tensor.

I 41. Let Ai denote the components of a covariant vector. (a) Show that aij =
∂Ai

∂xj
− ∂Aj

∂xi
are the

components of a second order tensor. (b) Show that
∂aij

∂xk
+
∂ajk

∂xi
+
∂aki

∂xj
= 0.

I 42. Show that xi = K eijkAjBk, with K 6= 0 and arbitrary, is a general solution of the system of equations

Aix
i = 0, Bix

i = 0, i = 1, 2, 3. Give a geometric interpretation of this result in terms of vectors.

I 43. Given the vector ~A = y ê1 + z ê2 + x ê3 where ê1, ê2, ê3 denote a set of unit basis vectors which

define a set of orthogonal x, y, z axes. Let ~E1 = 3 ê1 + 4 ê2, ~E2 = 4 ê1 + 7 ê2 and ~E3 = ê3 denote a set of

basis vectors which define a set of u, v, w axes. (a) Find the coordinate transformation between these two

sets of axes. (b) Find a set of reciprocal vectors ~E1, ~E3, ~E3. (c) Calculate the covariant components of ~A.

(d) Calculate the contravariant components of ~A.

I 44. Let A = Aij êi êj denote a dyadic. Show that

A : Ac = A11A11 +A12A21 +A13A31 +A21A12 +A22A22 +A23A32 +A31A13 +A32A23 +A23A33

I 45. Let ~A = Ai êi, ~B = Bi êi, ~C = Ci êi, ~D = Di êi denote vectors and let φ = ~A~B, ψ = ~C ~D denote

dyadics which are the outer products involving the above vectors. Show that the double dot product satisfies

φ : ψ = ~A~B : ~C ~D = ( ~A · ~C)( ~B · ~D)

I 46. Show that if aij is a symmetric tensor in one coordinate system, then it is symmetric in all coordinate

systems.

I 47. Write the transformation laws for the given tensors. (a) Ak
ij (b) Aij

k (c) Aijk
m

I 48. Show that if Ai = Aj
∂xj

∂xi , then Ai = Aj
∂xj

∂xi . Note that this is equivalent to interchanging the bar

and unbarred systems.

I 49.

(a) Show that under the linear homogeneous transformation

x1 =a1
1x1 + a2

1x2

x2 =a1
2x1 + a2

2x2

the quadratic form

Q(x1, x2) = g11(x1)2 + 2g12x1x2 + g22(x2)2 becomes Q(x1, x2) = g11(x1)2 + 2g12x1x2 + g22(x2)2

where gij = g11a
j
1a

i
1 + g12(ai

1a
j
2 + aj

1a
i
2) + g22a

i
2a

j
2.

(b) Show F = g11g22− (g12)2 is a relative invariant of weight 2 of the quadratic form Q(x1, x2) with respect

to the group of linear homogeneous transformations. i.e. Show that F = ∆2F where F = g11g22−(g12)2

and ∆ = (a1
1a

2
2 − a2

1a
1
2).
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I 50. Let ai and bi for i = 1, . . . , n denote arbitrary vectors and form the dyadic

Φ = a1b1 + a2b2 + · · ·+ anbn.

By definition the first scalar invariant of Φ is

φ1 = a1 · b1 + a2 · b2 + · · ·+ an · bn

where a dot product operator has been placed between the vectors. The first vector invariant of Φ is defined

~φ = a1 × b1 + a2 × b2 + · · ·+ an × bn

where a vector cross product operator has been placed between the vectors.

(a) Show that the first scalar and vector invariant of

Φ = ê1 ê2 + ê2 ê3 + ê3 ê3

are respectively 1 and ê1 + ê3.

(b) From the vector f = f1 ê1 + f2 ê2 + f3 ê3 one can form the dyadic ∇f having the matrix components

∇f =

 ∂f1
∂x

∂f2
∂x

∂f3
∂x

∂f1
∂y

∂f2
∂y

∂f3
∂y

∂f1
∂z

∂f2
∂z

∂f3
∂z

 .

Show that this dyadic has the first scalar and vector invariants given by

∇ · f =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

∇× f =
(
∂f3
∂y

− ∂f2
∂z

)
ê1 +

(
∂f1
∂z

− ∂f3
∂x

)
ê2 +

(
∂f2
∂x

− ∂f1
∂y

)
ê3

I 51. Let Φ denote the dyadic given in problem 50. The dyadic Φ2 defined by

Φ2 =
1
2

∑
i,j

ai × ajbi × bj

is called the Gibbs second dyadic of Φ, where the summation is taken over all permutations of i and j. When

i = j the dyad vanishes. Note that the permutations i, j and j, i give the same dyad and so occurs twice

in the final sum. The factor 1/2 removes this doubling. Associated with the Gibbs dyad Φ2 are the scalar

invariants
φ2 =

1
2

∑
i,j

(ai × aj) · (bi × bj)

φ3 =
1
6

∑
i,j,k

(ai × aj · ak)(bi × bj · bk)

Show that the dyad

Φ = a s + t q + cu

has
the first scalar invariant φ1 = a · s + b · t + c · u
the first vector invariant ~φ = a× s + b× t + c× u

Gibbs second dyad Φ2 = b× ct× u + c× au× s + a× bs× t

second scalar of Φ φ2 = (b× c) · (t · u) + (c× a) · (u× s) + (a× b) · (s× t)

third scalar of Φ φ3 = (a× b · c)(s× t · u)
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I 52. (Spherical Trigonometry) Construct a spherical triangle ABC on the surface of a unit sphere with

sides and angles less than 180 degrees. Denote by a,b c the unit vectors from the origin of the sphere to the

vertices A,B and C. Make the construction such that a ·(b×c) is positive with a,b, c forming a right-handed

system. Let α, β, γ denote the angles between these unit vectors such that

a · b = cos γ c · a = cosβ b · c = cosα. (1)

The great circles through the vertices A,B,C then make up the sides of the spherical triangle where side α

is opposite vertex A, side β is opposite vertex B and side γ is opposite the vertex C. The angles A,B and C

between the various planes formed by the vectors a, b and c are called the interior dihedral angles of the

spherical triangle. Note that the cross products

a× b = sin γ c b× c = sinαa c× a = sinβ b (2)

define unit vectors a,b and c perpendicular to the planes determined by the unit vectors a,b and c. The

dot products

a · b = cos γ b · c = cosα c · a = cosβ (3)

define the angles α,β and γ which are called the exterior dihedral angles at the vertices A,B and C and are

such that

α = π −A β = π − B γ = π − C. (4)

(a) Using appropriate scaling, show that the vectors a,b, c and a,b, c form a reciprocal set.

(b) Show that a · (b× c) = sinα a · a = sinβ b · b = sin γ c · c
(c) Show that a · (b× c) = sinα a · a = sinβ b · b = sin γ c · c
(d) Using parts (b) and (c) show that

sinα
sinα

=
sinβ
sinβ

=
sin γ
sin γ

(e) Use the results from equation (4) to derive the law of sines for spherical triangles

sinα
sinA

=
sinβ
sinB

=
sin γ
sinC

(f) Using the equations (2) show that

sinβ sin γb · c = (c× a) · (a × b) = (c · a)(a · b)− b · c

and hence show that

cosα = cosβ cos γ − sinβ sin γ cosα.

In a similar manner show also that

cosα = cosβ cos γ − sinβ sin γ cosα.

(g) Using part (f) derive the law of cosines for spherical triangles

cosα = cosβ cos γ + sinβ sin γ cosA

cosA =− cosB cosC + sinB sinC cosα

A cyclic permutation of the symbols produces similar results involving the other angles and sides of the

spherical triangle.


